

Simulations to inform NASA's Future Lightning Missions

Patrick Gatlin, M. Quick, T. Lang, J. Remington (NASA MSFC), Collaborators: S. Behnke, H. Edens (LANL), P. Bitzer (UAH), D. Mach (USRA), T. Mansell (NSSL)

Presentation at Lightning Modeling Grand Challenge Workshop, Albuquerque, NM, April 1-3, 2024

Lightning Imaging Sensor (LIS) decommissioned on November 16, 2023

3-D monitoring of lightning with optical and VHF sensors in LEO

CubeSpark is a constellation of small satellites acting as a 3D lightning mapping network in space:

- *VHF radio measurements to map lightning structure inside clouds*
- Bispectral, high-resolution optical measurements to enhance detection of lightning in severe and anomalous thunderstorms and flashes that extend upward from cloud-top

CubeSat Lightning Imaging and Detection Experiment (CLIDE)

- Objective: Improve the detection of small and optically dim lightning flashes that frequent intense thunderstorms
- Dual-wavelength:
 - 777.4-nm (OI multiplet—leaders)
 - 337-nm (N₂ SPS—streamers)
- Digital Imager and Event Detector:
 - CMOS Image Sensor developed for lightning detection
 - 432 x 420 pixel array (<2 km resolution from LEO)
 - 2000 frames per second
 - Enhance QE at 337-nm via backside processing (MBE+AR recipe)
- MSFC designing for use on small satellite missions (e.g., CubeSpark, Bushfire Monitoring)
- Funded by NASA ESTO-IIP21 as Instrument Concept Demo.
- Current TRL: 3

acce france

\rightarrow Observing System Simulation Experiment (OSSE)

OSSE Examples	Question Asked
Sampling	How often and with what resolution do I need to sample a feature of interest?
Retrieval	How well can the measurement estimate the geophysical variable of interest, including its uncertainties?
Process	What measurements are needed to characterize a process of interest?
Forecast	How much will the new observations improve a weather forecast?
Climate	Do these observations allow us to better constrain climate forcings or response?
	Modified from CCP ASSE by D. Posselt (IPI

Modified from CCP OSSE by D. Posselt (JPL)

A CORC.

Nature Run: CRM that simulates lightning flash geometry

NSSL Collaborative Model for Multiscale Atmospheric Simulation (NCOMMAS; Mansell et al. 2010)

- Non-hydrostatic, convection-allowing model (Wicker & Wilhelmson 1995; Cogniglio et al. 2006)
- 2-moment microphysics (parameterizes q and n for cloud droplets, raindrops, ice crystals, aggregates, graupel; Mansell & Ziegler 2013+)
- Storm electrification scheme (parameterizes ion & hydrometeor charging; Mansell et al., 2005+)
- Discrete breakdown model (parameterizes geometry of lightning channels; Mansell et al., 2002+)

Forward Models: Cloud-top Optical Emission

NASA

Page 8

Monte Carlo Photon Pathway Model

- Simulates light emitted by lightning channel (line source)
- Lightning radiative transfer model: Thomson & Krider (1982); Koshak et al. (1994); Light et al. (2001)
- Photon extinction by inhomogeneous environment: Brunner & Bitzer (2020)
 - 1-D Photon Extinction (1-D cloud)

Care

Leaner.

Forward Models: Ionospheric propagation of VHF signal

Los Alamos National Lab VHF signal propagation model

- Simulates propagation of RF wave through ionosphere
- Accounts for polarization of wave and ionospheric dispersive effects on it

Instrument Simulator: Optical Lightning Mapper (e.g., CLIDE)

M. Quick (MSFC); D. Mach (USRA)

Page 10

acce a concerne

Example: Optical Lightning Event Detector

M. Quick (MSFC); D. Mach (USRA)

care forace

Simulated Observations: VHF Lightning Mapping from Space (e.g., CubeSpark)

