

BIMAP-3D Observations Show Lightning Flashes Were Ignited by **Cosmic-ray Showers**

Full paper: Shao et al., JGR, 2025

Xuan-Min Shao, Daniel Jensen, Cheng Ho, Michael Caffrey, Eric Raby, Paul Graham, Brian Haynes, William Blaine

Los Alamos National Laboratory

LA-UR-25-23025

Lightning Modeling Grand Challenge Workshop, 1-3 April 2025, Texas Tech University, Lubbock, Texas

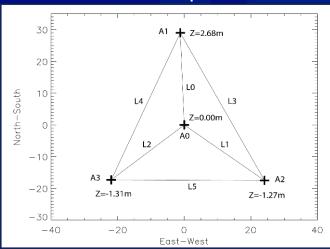
Lightning processes in initial microseconds

Observed with broadband RF INTF

- Lightning flashes commonly start with a positive fast discharge (+FD) (>10⁷ m/s, Rison et al., 2016)
 - 82% ICs; 48% CGs
- Some flashes appeared to start with a negative fast discharge (-FD) (Tilles et al., 2019). However, later
 observations showed –FD commonly followed a weak and short +FD (Huang et al., 2021)

BIMAP-3D showed most flashes start with +FD. Its intensity varies in large range from flash to flash. Detection depends on +FD intensity and distance, and sensor sensitivity.

Among 46 fully developed flashes over BIMAP-3D in 07/30/2022 storm


- 27 (59%) with +FD observed from both stations. RF intensity varies from noise floor to saturation level
- 10 (22%) with intense +FD/-FD sequence from both stations during intense storm stage
- 5 (11%) with weak +FD detected from one but not the other station (stations separated by 11.5km)
- 4 (8%) with no FD above noise from either station

BIMAP-3D: 3-Dimensional <u>Broadband</u> Interferometric <u>Mapping and Polarization system</u> (Shao et al., JGR, 2023)

Broadband (20-80 MHz), dual-polarization antenna (LWA antennas)

Each BIMAP station consists of 4 antennas for 2D source and polarization

2 stations for 3D source and polarization

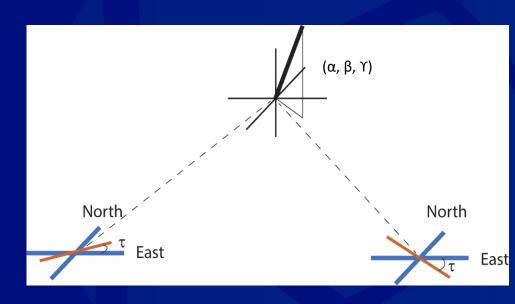
For linearly polarized signal, its 3D orientation can be determined from two-station observations (*Shao et al., JGR, 2023*)

For one station observation

$$A\alpha + B\beta + C\gamma = 0$$
 [α, β, γ]: polarization orientation unit vector

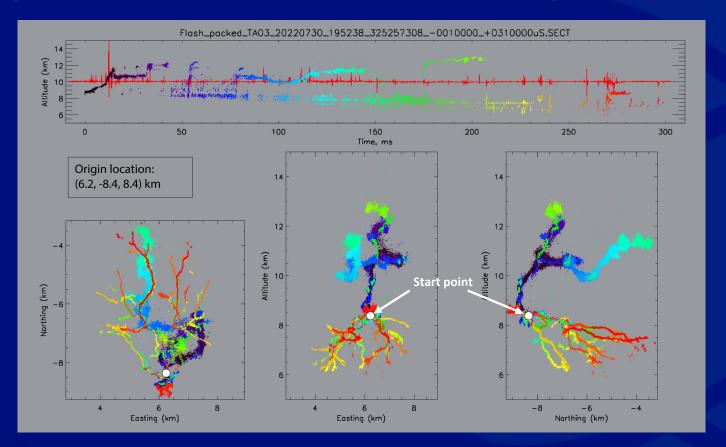
$$A = (\cos^2\theta \cos^2\varphi + \sin^2\varphi) \sin\tau + \sin^2\theta \sin\varphi \cos\varphi \cos\tau$$

$$B = -(\cos^2\theta \sin^2\varphi + \cos^2\varphi) \cos\tau - \sin^2\theta \sin\varphi \cos\varphi \sin\tau$$

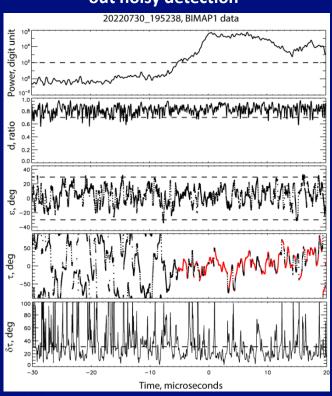

$$C = \sin\theta \cos\theta \sin(\varphi - \tau)$$

 (φ, θ) : source direction; τ : tilt angle from East

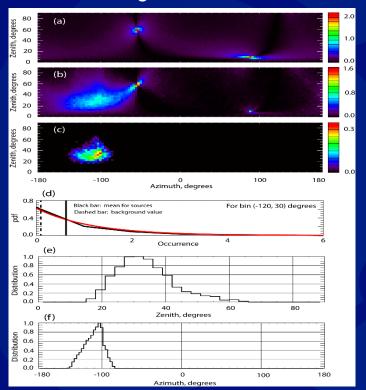
With two station observations


$$V_1 = (A_1, B_1, C_1)$$
 $V_2 = (A_2, B_2, C_2)$

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \frac{\pm \mathbf{V}_1 \times \mathbf{V}_2}{|\mathbf{V}_1 \times \mathbf{V}_2|}$$

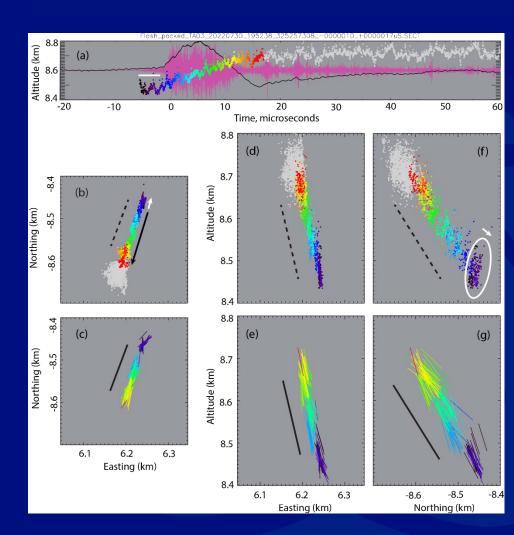

Overall structure and initiation location for Flash 1

Initial stage of this flash used to demonstrate polarization analysis



Statistical and noise-reduction analyses for 3D polarization construction

Single station 2D analysis to filter out noisy detection



Two-station 3D analysis to remove background effect

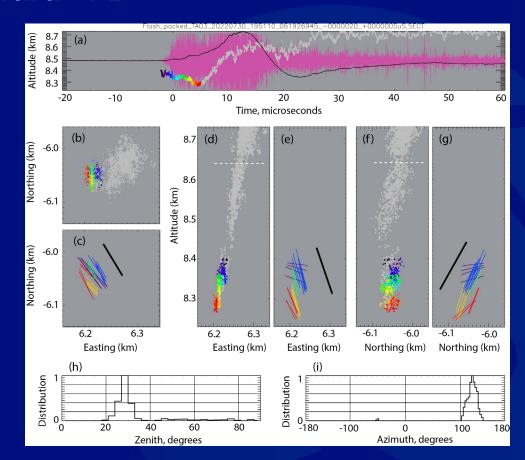
Flash 1, 3D results for initial FD

- Lightning started with a short and weak positive discharge in first 3-4 µs
- Followed by a negative fast discharge(-FD)
 (1.3×10⁷m/s) of 19 μs along ~300m straight path
- Averaged polarization parallel to discharge path
- Propagation direction (-109°, 34°). Local geomagnetic field direction (-98°, 26°). FD nearly parallel to B
- Polarization aligned with propagation path, but high propagation speed is not understood.

Flash 2: clear initial downward +FD

Source development:

Duration: 7µs (black -> red)


- Length: 100 m

- Speed: 1.4×10^7 m/s

Direction: (-150°, -12°)

Averaged polarization orientation

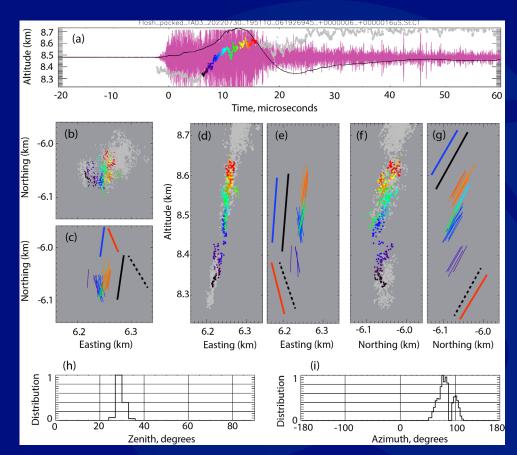
- (118°, 33°) or (-62°, -33°),
- Clearly tilted away from source propagation direction

Flash 2: -FD immediately after +FD

Source development

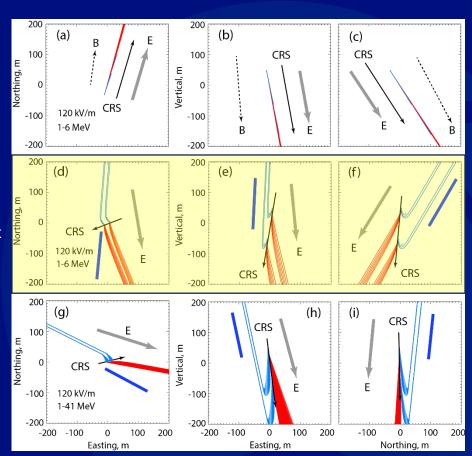
- Duration: 10 μs (black -> red)

- Length: 300 m

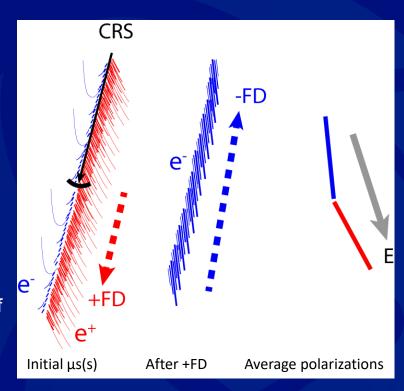

- Speed: 3.0×10^7 m/s

Direction: (33°, 10°)

Average polarization orientation:


- (77°, 29°)
- tilted away from propagation direction.

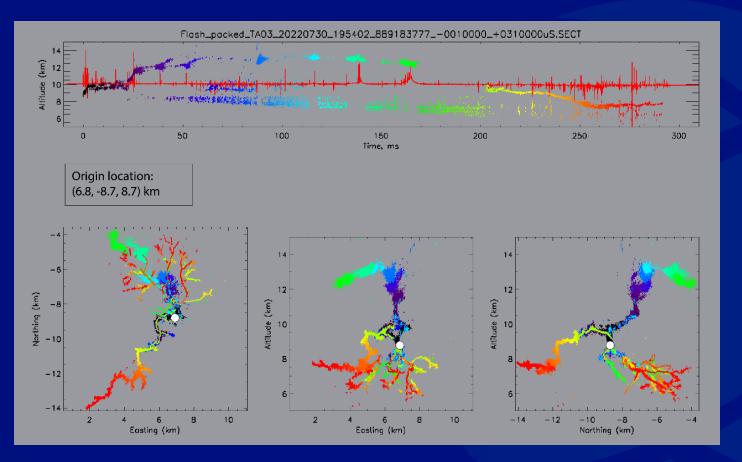
In horizontal plane, -FD polarization rotates 40°-50° from +FD (from dashed to solid black lines)


Deflection of high-energy e⁻ and e⁺ as of CRS in E and B fields

- Assume CRS in direction between +FD and –FD propagation directions (thin black arrows), independent of E-field
- Assume E-field direction between +FD and –FD polarization orientations (gray arrows), with amplitude of 120 kV/m
- Atmosphere density at 8.5km
- Middle row related to Flash 2, shows e⁺ (red) and e⁻ (blue) from 1 to 6 MeV
- All e⁺ runaway and only >5 MeV e⁻ turn around and runaway at E of 120 kV/m (<RREA field)
- These runaway e⁺/e⁻ leave 3300/m eV-level electrons along their traces, and are expected to guide the instantaneous discharge current direction (polarization) in later +FD/-FD processes
- Deflected e⁺ and e⁻ directions agree with +FD and –FD polarizations (see last slide)

Time sequence of +FD and -FD related to CRS

- +FD starts at CRS front, propagates along ionized core behind the speed-of-light CRS front
 - straight and fast
- Immediately behind CRS front, ionization imprints from e⁺ dominates
 - instantaneous discharge current (polarization) guided by imprints of deflected e⁺
- After microseconds, CRS (and e⁺) moves out of the region
 - > only e- (including more ionized e-) left along path
 - FD discharge current (polarization) guided by imprint of deflected e⁻



Conclusions

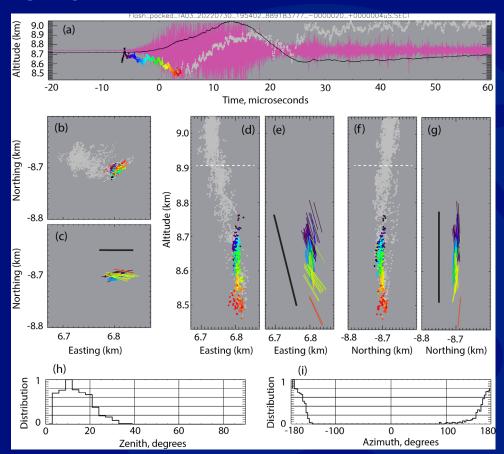
- High (>10⁷ m/s) discharge speed suggests pre-ionized, RF invisible path before +FD/-FD
- Discharge path (+FD and –FD) not solely driven by cloud electric field. If so, discharge propagation and polarization would be along the same direction.
- Observations inconsistent with E-field-driven RREA since B-field effect on runaway electrons is <10% of RREA E-field effect, and polarization is expected to be nearly aligned with discharge direction, <7°.
- Like RREA, FRD is dominated by electrons, and its development is predominately driven by E-field
- With CRS, all observed features can be consistently explained, including that of Flash 1 and other more common cases that start with only a +FD
- Initiation depends on combined intensities and directions of E, CRS, and somewhat B. E-field does not have to be above RREA threshold.
- Full paper of Shao et al., 2025 reports more examples and detailed analyses

Backup slides

Overall structure and initiation location for Flash 3

Flash 3: Clear and more extensive +FD

Source development


Duration: 11 µs (black -> red)

- Length: 200 m

- Speed: 1.8×10^7 m/s

- Direction: (27°, -4°), vertical

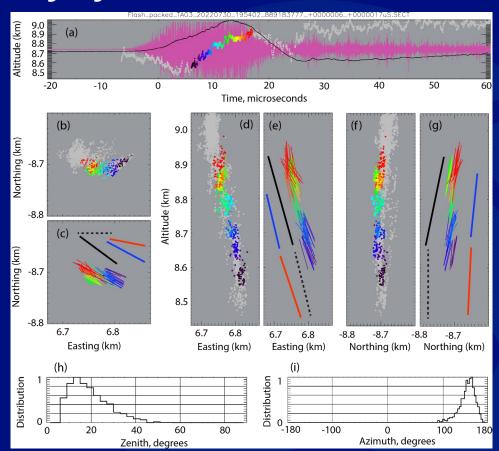
- Polarization orientation
 - (-179°, -14°)
 - Tilted away from propagation direction

Initial +FD followed immediately by -FD

Source development

Duration: 11 µs (black -> red)

- Length: 350 m

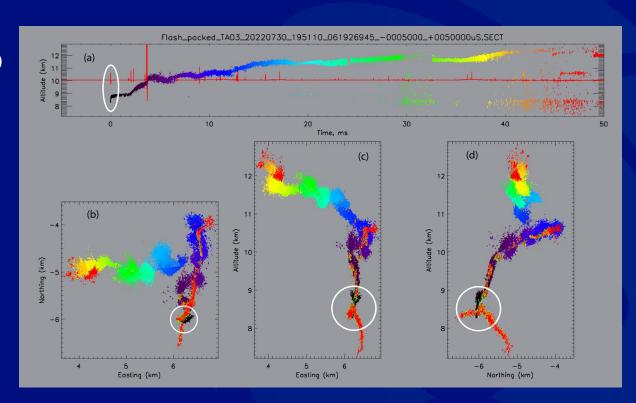

- Speed: 3.2×10^7 m/s

Direction: (179°, 12°)

Polarization orientation:

- (144°, 19°)
- tilted away from propagation direction.

In horizonal plane, –FD polarization rotates 30°-40° from +FD (dashed and solid black lines)



A cosmic-ray shower (CRS) pierces through cloud immediately prior to +FD/-FD process

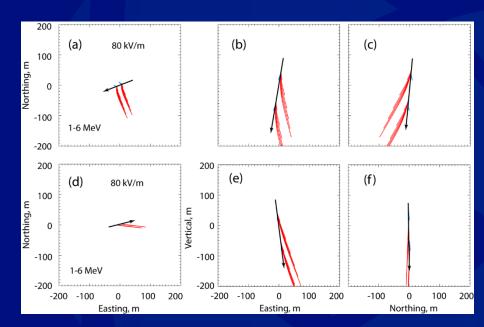
- CRS with >10¹⁵ eV arrive at 6.5/(km²s) rate, frequent enough for lightning rate
- CRS of 10¹⁵ eV leaves 10⁷-10⁸/m³ ionized eV-level electrons within 1-m radius at 8.5 km atmosphere, compared to 0.5/m³ in normal air
- CRS arrival direction independent of cloud E-field
 - pre-ionized path independent of E-field
- CRS provides equal number of high-energy e⁻ and e⁺

Later discharge in Flash 2 avoided the initial +FD/-FD path

- Further indicates +FD/-FD path was not solely driven by E-field, otherwise they would fellow and extend along the same path
- Channel above +FD/-FD
 path (black dots in circle)
 tilted toward north,
 agreeing with inferred Efield direction for +FD/-FD
 analysis

Flash started with +FD

- +FD at 1.3 x 10⁷ m/s
- Occasional –FD?, not extended beyond +FD.
- Average polarization slanted from source propagation direction


Same as +FD in other flashes.

Traces of e⁻ and e⁺ in geomagnetic and lower E field

Occurrence of FD and ensuing lightning depends on the combined direction and intensity effects of CRS, E-field, and the geomagnetic field.

- E-field: 80kV/m instead of 120 kV/m
- Electrons less likely turn around and become runaway
- Ionization mostly due to downward positrons
- This would likely lead to +FD but not the following –FD, if +FD can occur at all from a given CRS

Why +FD polarization follows deflected e⁺ traces and –FD polarization follows e⁻ traces?

- +FD likely starts at the front region of CRS core, since the electron density would be the highest at the position and time
- After +FD started, it will propagate downward behind the shower front in the direction where the positron ionization dominates, and the discharge current (polarization) is more influenced by the positron traces
- When –FD starts to propagate upward some microseconds later, more eV-level electrons due to positions would have attached to neutrals, and upward ionization is more attributed to upward propagating runaway electrons, from both CRS and secondary high-energy electrons, leading –FD polarization more influenced by high-energy e-traces

Questions remain unanswered

- How the first RF visible discharge started by the CRS?
 - Likely in the front region of the CRS shower due to high density of free electrons
- How the discharge propagate at >10⁷ m/s?
 - Even with 10⁷-10⁸ /m³ eV-level electron density, it is still poorly ionized, and one can't apply typical plasma calculation for the propagation speed.