

Exceptional service in the national interest

A LIGHTNING GRAND CHALLENGE: SANDIA'S 5 YEAR PLAN

(FY26-30)

Thom R. Edwards, Grant Soehnel

Sandia National Labs

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

WHAT QUESTION(S) ARE WE TRYING TO ANSWER

What did we see, how did we see it, and how variable is that observation?

- BLUF: What is the complete population of all lightning processes and signals we can observe?
- Answering this is fundamental to Sandia's mission. We can answer this question with directed, detailed analysis:
 - Coincident Synthesis (What happened at this time, in this location, based on these reports?)
 - Time Series Behavior (How did that signal evolve? What process or environment preceded/followed it?)
 - Spatial Optical Scattering (How did the environment change the source signal in space and time?)
 - **Spectral Analysis** (What is the temporal variability in spectra during a flash? How do sources of continuum emissions differ than sources of line emissions?)
 - Cross-Phenomenology Comparisons (How are the measurements of multiple phenomenologies [e.g. RF and optical] related to each other in time, space, and magnitude?)

OVERVIEW

Global Theme: Capturing The Population of Lightning Processes and Signals

Why

 Distinguish lightning from other sources for our deployed and future sensors

How

- Models Build physics-based insight into the processes that create and determine the characteristics of lightning signals
- Measurements Leverage public data and community resources to verify and constrain models
- Analysis Understand the defining features and variability of lightning signals

What

- Capture and study the spectral, temporal, and spatial population of source signals to inform future instruments and algorithms
- Understand the variety of heterogeneous cloud structures regionally, seasonally, and internally and how they complicate lightning signals
- Leverage larger weather and lightning community expertise and sustain and continue engagement with community for years to come

DIVING DEEPER: WHAT?

What: Lightning as a signal and the environment that modifies it

- Capture and study the spectral, temporal, and spatial population of source signals to inform future instruments and algorithms
- Understand the variety of heterogeneous cloud structures regionally, seasonally, and internally and how they complicate lightning signals
- Leverage larger weather and lightning community expertise and sustain and continue engagement with community for years to come
 - Collaboration with universities (TTU/NMT), engagement with other agencies (NOAA/NASA) and contractors (Lockheed Martin).
- Sustain and continue engagement with community for years to come
 - Regular attendance at workshops and conferences (AGU, GLM Science Meeting, Modeling Workshop)
 - Continued collaboration with universities (TTU, NMT, etc.)

Acronyms:

TTU: Texas Tech University

NMT: New Mexico Tech

AGU: American Geophysical Union GLM: Geostationary Lightning Mapper

DIVING DEEPER: HOW?

How: Three related thrusts, utilizing Sandia's expertise and relationships

Models

• Build physics-based insight into the processes that create and determine characteristics of lightning signals

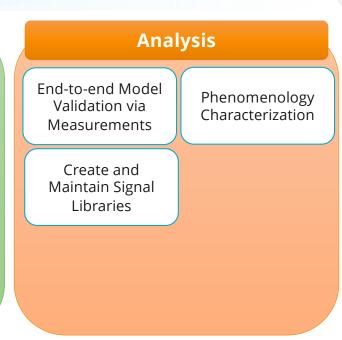
Measurements

• Leverage public data and community resources to verify and constrain models

Analysis

 Learn how to distinguish lightning from other sources with confidence and traceability

THE LARGER LIGHTNING COMMUNITY


Lightning Modeling Grand Challenge Roadmap: Greater Community Effort

Models			
Clouds	Radio Frequency Source		
Streamer-Leader	Radio Frequency Propagation		
Lightning Initiation	Optical Signal Source		
Lightning Discharge	Optical Signal Propagation		
Electromagnetic Field Change	Other Phenomenology		
Ancillary Observables	Model Stitching		

Models

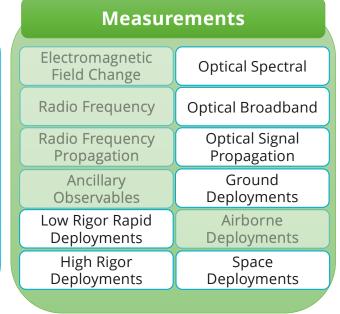
Weasurements			
Electromagnetic Field Change	Optical Spectral		
Radio Frequency	Optical Broadband		
Radio Frequency	Optical Signal		
Propagation	Propagation		
Ancillary	Ground		
Observables	Deployments		
Low Rigor Rapid	Airborne		
Deployments	Deployments		
High Rigor	Space		
Deployments	Deployments		

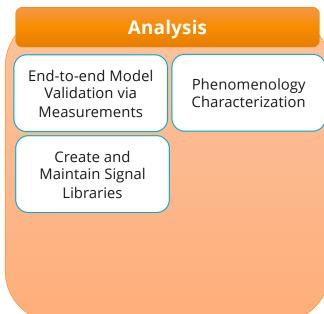
Measurements

Organizational

Community Coordination

Workshops


Data Repositories


SANDIA'S INVOLVEMENT

Lightning Modeling Grand Challenge Roadmap: Sandia's Focus

Models Radio Frequency Clouds Source Radio Frequency Streamer-Leader Propagation **Optical Signal** Lightning Initiation Source Lightning **Optical Signal** Discharge Propagation Electromagnetic Other Field Change Phenomenology Ancillary **Model Stitching** Observables

Organizational

Community Coordination

Workshops

Data Repositories

MODELS – OVERVIEW

- Sandia has multiple efforts, both in progress and planned for the future:
 - FLASH Electro-hydrodynamic model of the lightning return stroke
 - Caitano Model Phenomenological model of lightning return stroke
 - Spark LDRD Experimental validation of lightning spectra model
 - Optical Transport Temporal, spectral, spatial characteristics modified by atmospheric transport
 - Model Stitching/Interface demonstrate how to develop interfaces

Models		
Clouds	Radio Frequency Source	
Streamer-Leader	Radio Frequency Propagation	
Lightning Initiation	Optical Signal Source	
Lightning Discharge	Optical Signal Propagation	
Electromagnetic Field Change	Other Phenomenology	
Ancillary Observables	Model Stitching	

MODELS - NEEDS, OUTLOOK, AND TIMELINE

Needs and Outlook

- Sandia needs a better understanding of the models and outputs that are currently in development *outside* of Sandia.
 - Use of weather model outputs
 - Cloud structures and electrification (WRF/WRF-elec)
 - Branched discharge structure
 - Leader/Streamer processes
- Sandia is not developing these models, but needs awareness to fit together into the larger initiative.

Timeline

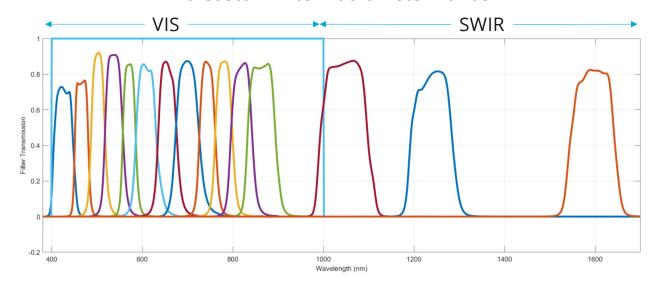
- Short term: Stitch between Sandia's models and easily integrated outside sources
 - WRF-elec → FLASH
 - FLASH → Optical Transport
- Long term: Aim for the end-to-end capability
 - Lab measurements to compare against models
 - Use global weather models as inputs
 - Test against "Golden Days" (See Measurements section)
 - Design measurement instrumentation and deployments focused on model validation

Acronyms:

DrEvl: Dragon's Fly-Eye Viewing Lightning

LEO: Low Earth Orbit

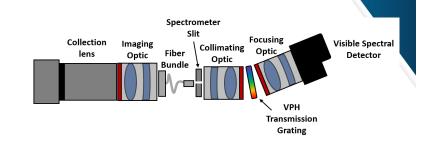
MEASUREMENTS – OVERVIEW

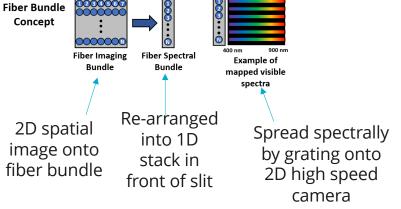

- Sandia focuses on optical instrumentation between 250 nm and 2 microns on a variety of platforms and deployments:
 - Lydia Radiometer Pathfinding, multichannel collection, first light co-collect w/ other sensors
 - DrEVL High sample rate, mobile, multichannel collection
 - Big Boy Higher channel count radiometers, coupling high speed imaging with radiometers, opportunity to fly in LEO
 - Spectrometer High spectral/temporal resolution for long data records, to distinguish unique characteristics of lightning (spectral/temporal)

Measurements			
Electromagnetic Field Change	Optical Spectral		
Radio Frequency	Optical Broadband		
Radio Frequency Propagation	Optical Signal Propagation		
Ancillary Observables	Ground Deployments		
Low Rigor Rapid Deployments	Airborne Deployments		
High Rigor Deployments	Space Deployments		

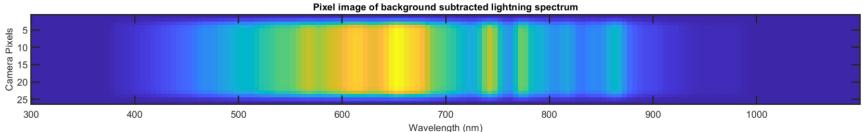
BIG BOY LEO LIGHTNING PAYLOAD

Sensor	FOV	Pixel GSD	Sample Rate
VIS Radiometer	Circular, 31.6°, 227km	N/A	100KHz
SWIR Radiometer	Circular, 21°, 150km	N/A	100KHz
Luxima Camera	31.5°x31.5°, 225x225km	0.44km, 1.32km 3x3 binned	4KHz
EVK4 Camera	42.5°x24.7°, 311x175km	0.243km	~10KHz equivalent


16 Custom Filter Radiometer Bands



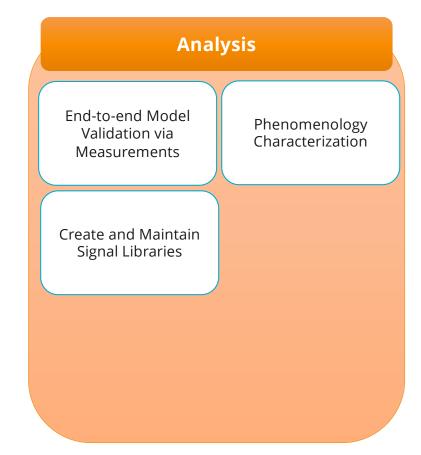
- 15 week mission on ISS
- Expect to capture ~12,000 flashes
- 1s post-triggered + 5ms pre-trigger buffered on all sensors
- ~15 months kickoff to delivery
- Launch expected late CY2025


SPATIAL/SPECTRAL/TEMPORAL LIGHTNING SPECTROMETER

- This concept is unique in that the fiber grid (planning 7x7) spatially samples the scene and does not rely on the lightning channel itself to serve as the slit.
- Prototype version is being assembled now (March 2025) using COTS lenses, a custom assembled fiber bundle, and a Phantom camera
- Hoping to collect lightning data in the field summer 2025
- Follow on version with custom optics and a blueenhanced Phantom camera (need to purchase) is desired to extend the range down to 300nm in the blue.

MEASUREMENTS – NEEDS, OUTLOOK, AND TIMELINE

Needs and Outlook


- Many platforms/field deployments currently scoped.
 - TTU Field site and mobile operations: Highly instrumented, aiming at "Golden Day" observations (high number of deployed and working sensors + good storms)
 - High altitude and on-orbit pathways ISS, ER-2, Balloons/Stratolite, C-130
- Instrumentation already deployed in multiple areas, with more instrumentation in development.
- Sandia will need outside cooperation to coordinate multi-sensor deployments.

Timeline

- Short term: Iteration on radiometry, extension to more deployment opportunities
 - Modification of current radiometers for mobile operation (Vans, tripod)
 - Iteration on radiometric instruments (DrEVL, BigBoy)
- Long term: Novel technology, coordinated deployments
 - Spectrometer First on ground, then on airborne platforms
 - Second shot on ER-2, potential to incorporate new C-130 Hurricane Hunters

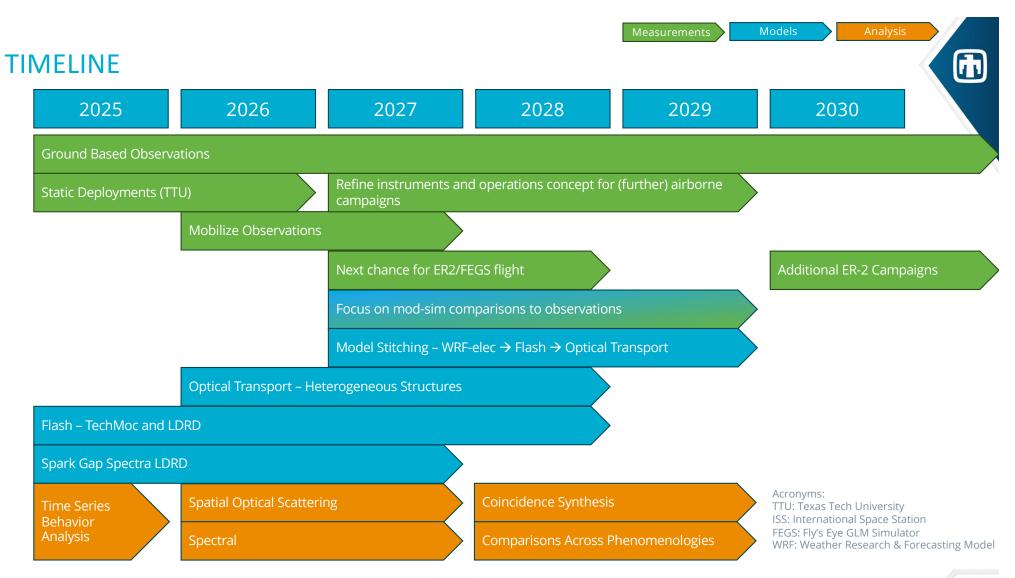
ANALYSIS – OVERVIEW

- Using the instrumentation from Sandia and the rest of the community, Sandia is focused on distinguishing lighting signals from other sources.
 - Coincidence Synthesis measurement phenomenology cross comparisons, timing and strength of RF vs. optical
 - Time series behavior time intensity signal characteristics, sample rate effects and/or characterization of high-speed continuing current
 - Spatial optical scattering pixelated sensor looking at thick clouds, spatial size and temporal movement of optical signals
 - Spectral temporal and spectral variability across flashes, separation of continuum from line

(1)

ANALYSIS - NEEDS, OUTLOOK, AND TIMELINE

Needs and Outlook


- Sandia aims to build signals libraries across many sensing modalities, focused on model validation cases and distinguishing characteristics of lightning from other sources.
- Already have experience with many datasets: FEGS/FEGS2, GLIMS, GLM/MTG-LI, WWLLN/NLDN/GLD360, Spectrometer, Ground Radiometry
- Cross-instrument analysis aims to validate models and develop methods to distinguish lightning from other sources.

Timeline

- Short term: Single instrument + Model integration
 - Time series behavior analysis
 - Spatial optical scattering
 - Spectral behavior in time and space
- Long term: Cross-sensor and crossphenomenology synthesis
 - Coincidence across sensors
 - Comparisons of optical and RF phenomenologies

Acronyms:
FEGS: Fly's Eye GLM Simulator
GLIMS: Global Lightning and SprIte Measurement
GLM: Geostationary Lightning Mapper
MTG-LI: Meteosat Third Generation Lightning Imager

WWLLN: World Wide Lightning Location Network NLDN: National Lightning Detection Network GLD360: Global Lightning Detection Network

