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Weather disasters are becoming more frequent
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U.S. Hit by Record Number of High- "
Cost Disasters in 2023 |

There were 28 storms, wildfires or other disasters that each cost
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at least one billion dollars in damages, a sign of the growing

.
w
o
o

economic burden of climate change.
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NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters
(2024). https://www.ncei.noaa.gov/access/billions/, DOI: 10.25921/stkw-7w73
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Atmospheric science fundamentally involves
processes across scales




Conceptual diagram of convective storms
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Muticellular
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From Markowski and Richardson



Conceptual model of lightning charge distribution
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Global Lightning Frequenc
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Rainfall from the TRMM Satellite
(15t Precipitation Radar in Space; 1997-2014)

a) DJF

Revolutionized our understanding of
clouds and precipitation in the

tropics and subtropics




Most Intense Thunderstorms on Earth
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Environments supporting the deepest convection on Earth
have both convective instability and convective inhibition

—> Allows for the build-up of convective energy that is critical for
generating deep intense convection

- Combination of Convective Available Potential Energy (CAPE)

and Convective Inhibition (CIN) generated from mountain
flows (i.e., low level jets, elevated flows over mountains, etc.)



“The most intense thunderstorms on earth” according
to satellite observed storm height, organization,

severe hall, lightning proxies
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Hail Frequency Comparison

AMSR-E Estimated Severe Hail
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Total Hail Events/Hour

Diurnal Cycle of Lightning in Argentina

Hailstorms tend to be multicellular
with a nocturnal maximum

(Bruick et al. 2019)
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Significantly more intense echoes and graupel
are found in South American storms compared
to and Alabama storms
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Lightning flash regressions applied to 1-km WRF
simulations agree well with observations
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Lightning regressions based on U.S. storms
significantly overestimate flash rates in South America
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Physical Approach

« What physics are implemented in modeling convective storms?

Mesoscale models using community-developed parameterizations to

represent unresolved processes

Planetary boundary layer
Cloud microphysics
Land surface processes

Lightning
And many more

How has this modeling activity been motivated by a larger scientific

problem?

Severe weather hazards
Numerical Weather Prediction efforts
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Physical Approach

« What physics are implemented in modeling convective storms?

Describe the current capability

Very well-developed mesoscale models with known challenges
Hard to get the right storm in the right place at the right time

How does the wider scientific community use this model

component and similar tools?
Regularly used for operational Numerical Weather Prediction efforts (e.g., HRRR,
FV3 operational models)
Used for research studies from case studies to high-resolution convection-
permitting regional climate simulations
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Future of Weather and Climate Forecasting

Climate models implicitly represent convective Digital twins are a current reality

mass flux (CMF) - processes important to
CMF not captured 1

Computational power drives spatial resolution
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(after Voosen 2020)

ECMWF'’s progress in degrees of freedom

_ (levels x grid columns x prognostic variables)
_U ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

So all problems solved then?



Ongoing Challenges in State-of-the Art Models
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Vertical motion is a major source of error in our weather and climate
models



Deep convection overshoots in NWP forecasts

Deep convection overshooting tops from
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Physical Approach

What are the gaps
Most mesoscale model overestimate the vertical motion in
strong convective storms
At the same time, the HRRR model underestimates the height of
overshooting tops
Bulk microphysics schemes greatly simplify the complexity of
dynamic-microphysics interactions
Resolve different components of the storms with different grid
spacings

Mesoscale processes are reasonably well represented at ~4km

horizontal grid spacing
Thermals and individual updrafts are well represented at LES (~100m)
grid spacing
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Convection Evolves Rapidly

Cloud 142014 CDT 142230 142533 142620

Development of a deep convective cloud over a 20 Convective development - 30 min
minute time period (images: Ted Fujita) perio d

Convective storms vertically transport and mix the atmosphere



NASA Investlgatlon of Convectlve Updrafts MISSIOh
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Evolution of storm
structures

Space Craft: 100kg Launch: 2026
Inclination: tropical (22.5 to 39°) Duration: 2 years

7 km s°1, 95 minute orbit, 15x per day ~330,000 convective cores at 39°




Model Use and Validation

« How is this model component validated?

« Comparisons to available observations
 Limited in time/space around the world

« How will model errors be quantified?
« Overestimates of vertical motion in convective storms has been quantified by 3D wind retrievals
from field campaigns =2 limited in availability and the estimates have their own uncertainties
« Radar reflectivity structures (i.e. storm modes) provides a useful validation opportunity
« Rainfall

« What observations are necessary for validation

« Concurrent radar, lightning, and vertical motion estimates
« Available now in limited regions (i.e., field campaigns)

Lightning Modeling Workshop ¢ Albuquerque, NM e 1-3 April 2024 24



Funding Sources

Provide a list of programs that fund research in your focus area. The purpose of this section is to
survey how we might organize long-term support for the work.

Funding cadence
(R = regular interval;

Sponsoring . Funding program I =irregular intervals; L =
TEERT Funding program element time-limited Comments
opportunity)
NASA ESSP Earth Venture R Interest in
Mission 3 (INCUS connecting CMF
Mission) with lightning
across the storm
lifecycle
NSF PDM R Storm comparisons

between Colorado
and Argentina
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Avenues for Collaborations

Describe the type of collaborations that have been beneficial for your field of research, what challenges
currently exist for establishing collaborations, and/or what type of collaborations you would like to see better

supported.

» Across national organizations or agencies (public and private)

* Satellite missions like INCUS

* International partnerships
* Field campaigns (e.g., RELAMPAGO, KPOP-MS in South Korea, etc.)

* What is the balance of student, postdoc, and career-expert work?

* 1-3 students, 1-2 postdocs and 1-2 career-experts in my research group working on
convective storms and lightning
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Questions?

Funding support:
NSF grants AGS-1661657, AGS-2146709

: . NASA INCUS Mission: 80LARC22DA011
Colorado State University



